Characterization and distribution of mating type genes in the dothistroma needle blight pathogens.

نویسندگان

  • Marizeth Groenewald
  • Irene Barnes
  • Rosie E Bradshaw
  • Anna V Brown
  • Angie Dale
  • Johannes Z Groenewald
  • Kathy J Lewis
  • Brenda D Wingfield
  • Michael J Wingfield
  • Pedro W Crous
چکیده

ABSTRACT Dothistroma septosporum and D. pini are the two causal agents of Dothistroma needle blight of Pinus spp. in natural forests and plantations. Degenerate primers amplified portions of mating type genes (MAT1-1-1 and MAT1-2) and chromosome walking was applied to obtain the full-length genes in both species. The mating-type-specific primers designed in this study could distinguish between the morphologically similar D. pini and D. septosporum and between the different mating types of these species. Screening of isolates from global collections of D. septosporum showed that only MAT2 isolates are present in Australian and New Zealand collections, where only the asexual form of the fungus has been found. In contrast, both mating types of D. septosporum were present in collections from Canada and Europe, where the sexual state is known. Intriguingly, collections from South Africa and the United Kingdom, where the sexual state of the fungus is unknown, included both mating types. In D. pini, for which no teleomorph is known, both mating types were present in collections from the United States. These results provided new insights into the biology and global distribution of two of the world's most important pine pathogens and should facilitate management of the diseases caused by these fungi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effector identification in the pine pathogen Dothistroma septosporum

Effectors are molecules produced by plant-associated organisms, such as fungal pathogens, that facilitate infection of specific plant hosts. Some effectors directly or indirectly suppress host defence responses while others help to mask the foreign invader from recognition by the plant. Plants can also recognise and respond to specific effectors to mount a resistance response. Thus the study of...

متن کامل

Substantial heritable variation for susceptibility to Dothistroma septosporum within populations of native British Scots pine (Pinus sylvestris)

The threat from pests and pathogens to native and commercially planted forest trees is unprecedented and expected to increase under climate change. The degree to which forests respond to threats from pathogens depends on their adaptive capacity, which is determined largely by genetically controlled variation in susceptibility of the individual trees within them and the heritability and evolvabi...

متن کامل

Has Scots pine (Pinus sylvestris) co‐evolved with Dothistroma septosporum in Scotland? Evidence for spatial heterogeneity in the susceptibility of native provenances

Spatial heterogeneity in pathogen pressure leads to genetic variation in, and evolution of, disease-related traits among host populations. In contrast, hosts are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to pathogens can therefore be an indicator of a novel or endemic pathosystem. Currently, the most significant thre...

متن کامل

Genetics of Dothistromin Biosynthesis of Dothistroma septosporum: An Update

Dothistroma needle blight is one of the most devastating fungal pine diseases worldwide. The disease is characterized by accumulation in pine needles of a red toxin, dothistromin, that is chemically related to aflatoxin (AF) and sterigmatocystin (ST). This review updates current knowledge of the genetics of dothistromin biosynthesis by the Dothistroma septosporum pathogen and highlights differe...

متن کامل

Dothistroma pini, a forest pathogen, contains homologs of aflatoxin biosynthetic pathway genes.

Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 97 7  شماره 

صفحات  -

تاریخ انتشار 2007